Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`2sin 3x = sqrt3`
उत्तर
We have
`2 sin 3x = sqrt3`
`=> sin 3x = sqrt3/2`
since `sin 60^@ = sqrt3/2`
Therefore
`sin 3x = sqrt3/2`
sin 3x = sin 60°
3x = 60°
`x = 60^@/3`
x = 20°
APPEARS IN
संबंधित प्रश्न
State whether the following are true or false. Justify your answer.
cot A is the product of cot and A.
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Find the value of x in the following :
`2 sin x/2 = 1`
If sin (A − B) = sin A cos B − cos A sin B and cos (A − B) = cos A cos B + sin A sin B, find the values of sin 15° and cos 15°.
`(sin theta)/(1 + cos theta)` is ______.
The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
Evaluate: 5 cosec2 45° – 3 sin2 90° + 5 cos 0°.