Advertisements
Advertisements
प्रश्न
Find the value of x in the following :
`2sin 3x = sqrt3`
उत्तर
We have
`2 sin 3x = sqrt3`
`=> sin 3x = sqrt3/2`
since `sin 60^@ = sqrt3/2`
Therefore
`sin 3x = sqrt3/2`
sin 3x = sin 60°
3x = 60°
`x = 60^@/3`
x = 20°
APPEARS IN
संबंधित प्रश्न
If `tan theta = 1/sqrt7` `(cosec^2 theta - sec^2 theta)/(cosec^2 theta + sec^2 theta) = 3/4`
If `sin theta = a/b` find sec θ + tan θ in terms of a and b.
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the Following
4(sin4 30° + cos2 60°) − 3(cos2 45° − sin2 90°) − sin2 60°
If A and (2A – 45°) are acute angles such that sin A = cos (2A – 45°), then tan A is equal to ______.
A ladder rests against a vertical wall at an inclination α to the horizontal. Its foot is pulled away from the wall through a distance p so that its upper end slides a distance q down the wall and then the ladder makes an angle β to the horizontal. Show that `p/q = (cos β - cos α)/(sin α - sin β)`
If sin θ + cos θ = `sqrt(2)` then tan θ + cot θ = ______.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
If sinθ = `1/sqrt(2)` and `π/2 < θ < π`. Then the value of `(sinθ + cosθ)/tanθ` is ______.