Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
рдЙрддреНрддрд░
`Cosec A = "hypotenuse"/"opposite side" = 2/1`
Let x be the adjacent side
By applying Pythagoras theorem
`AC^2 = AB^2 + BC^2`
4 = 1 + ЁЭСе2
`x^2 = 3 => x = sqrt3`
`sin A = 1/(cosec A) = 1/2`
`tan A = (AB)/(BC) = 1/sqrt3`
`cos A = (BC)/(AC) = sqrt3/2`
Substitute in equation we get
`1/tan A + sin A /(1+ cos A) = 1/(1/sqrt3) + (1/2)/(1 + sqrt3/2)`
`=> sqrt3 + (1/2)/((2 + sqrt3)/2) = sqrt3 + 1/(2 + sqrt3) = (2sqrt3 + 3 +1)/(2 + sqrt3) = (2sqrt3 + 4)/(2 + sqrt3) = (2(2 + sqrt3))/(2 + sqrt3) = 2`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
In Given Figure, find tan P – cot R.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Evaluate the following
cos2 30° + cos2 45° + cos2 60° + cos2 90°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
`(tan^2 60^@ + 4 cos^2 45^@ + 3 sec^2 30^@ + 5 cos^2 90)/(cosec 30^@ + sec 60^@ - cot^2 30^@)`
If sin 2A = `1/2` tan² 45° where A is an acute angle, then the value of A is ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
`sqrt(3)` cos2A + `sqrt(3)` sin2A is equal to ______.
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.