Advertisements
Advertisements
प्रश्न
If sin θ – cos θ = 0, then find the value of sin4 θ + cos4 θ.
उत्तर
sin θ – cos θ = 0
sin θ = cos θ
`sinθ/cosθ` = 1
`\implies` tan θ = tan 45°
∴ θ = 45°
Now sin4 θ + cos4 θ = sin4 45° + cos4 45°
= `(1/sqrt(2))^4 + (1/sqrt(2))^4`
= `1/4 + 1/4`
= `2/4`
sin4 θ + cos4 θ = `1/2`
APPEARS IN
संबंधित प्रश्न
In Given Figure, find tan P – cot R.
State whether the following are true or false. Justify your answer.
cos A is the abbreviation used for the cosecant of angle A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`cosec theta = sqrt10`
Evaluate the following
tan2 30° + tan2 60° + tan2 45°
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Prove the following:
If tan A = `3/4`, then sinA cosA = `12/25`
If cos(α + β) = `(3/5)`, sin(α – β) = `5/13` and 0 < α, β < `π/4`, then tan (2α) is equal to ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.