Advertisements
Advertisements
प्रश्न
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.
उत्तर
2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ
= `2(sqrt(2))^2 + 3(sqrt(2))^2 - 2. 1/sqrt(2). 1/sqrt(2)` ...[∵ θ = 45°]
= `2 xx 2 + 3 xx 2 - 2 xx 1/2`
= 4 + 6 – 1
= 9
APPEARS IN
संबंधित प्रश्न
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
Evaluate the following
sin2 30° + sin2 45° + sin2 60° + sin2 90°
Find the value of x in the following :
`2sin 3x = sqrt3`
Find the value of x in the following :
`2 sin x/2 = 1`
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
sin (45° + θ) – cos (45° – θ) is equal to ______.
In the given figure, if sin θ = `7/13`, which angle will be θ?
Find will be the value of cos 90° + sin 90°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.