Advertisements
Advertisements
प्रश्न
In the given figure, if sin θ = `7/13`, which angle will be θ?
उत्तर
Given: sin θ = `7/13`
According to the trigonometric ratios formula,
sin θ = `"Perpendicular"/"Hypotenuse"`
= `7/13`
Hence, the angle θ is ∠XZY.
APPEARS IN
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
tan θ = 11
In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.
`sin theta = sqrt3/2`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
If `cot theta = 1/sqrt3` show that `(1 - cos^2 theta)/(2 - sin^2 theta) = 3/5`
If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.
If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`
Evaluate the Following
cosec3 30° cos 60° tan3 45° sin2 90° sec2 45° cot 30°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
Evaluate the Following
`(sin 30^@ - sin 90^2 + 2 cos 0^@)/(tan 30^@ tan 60^@)`
If `sqrt2 sin (60° – α) = 1` then α is ______.
If sin θ + sin² θ = 1, then cos² θ + cos4 θ = ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
If cos A = `4/5`, then the value of tan A is ______.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
(3 sin2 30° – 4 cos2 60°) is equal to ______.