Advertisements
Advertisements
प्रश्न
If cos A = `4/5`, then the value of tan A is ______.
विकल्प
`3/5`
`3/4`
`4/3`
`5/3`
`1/8`
उत्तर
If cos A = `4/5`, then the value of tan A is `underlinebb(3/4)`.
Explanation:
According to the question,
cos A = `4/5` ...(1)
We know,
tan A = `(sin A)/(cos A)`
To find the value of sin A,
We have the equation,
sin2θ + cos2θ = 1
So, sin θ = `sqrt(1 - cos^2θ)`
Then,
sin A = `sqrt(1 - cos^2A)` ...(2)
sin2A = 1 – cos2A
sin A = `sqrt(1 - cos^2A)`
Substituting equation (1) in (2),
We get,
sin A = `sqrt(1 - (4/5)^2)`
= `sqrt(1 - (16/25))`
= `sqrt(9/25)`
= `3/4`
Therefore, tan A = `3/5 xx 5/4 = 3/4`
संबंधित प्रश्न
If cot θ = `7/8`, evaluate cot2 θ.
Prove that `(sin "A" - 2sin^3 "A")/(2cos^3 "A" - cos "A") = tan "A"`
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
if `tan theta = 12/13` Find `(2 sin theta cos theta)/(cos^2 theta - sin^2 theta)`
The value of the expression (sin 80° – cos 80°) is negative.
What will be the value of sin 45° + `1/sqrt(2)`?
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.