Advertisements
Advertisements
प्रश्न
If cos A = `4/5`, then the value of tan A is ______.
पर्याय
`3/5`
`3/4`
`4/3`
`5/3`
`1/8`
उत्तर
If cos A = `4/5`, then the value of tan A is `underlinebb(3/4)`.
Explanation:
According to the question,
cos A = `4/5` ...(1)
We know,
tan A = `(sin A)/(cos A)`
To find the value of sin A,
We have the equation,
sin2θ + cos2θ = 1
So, sin θ = `sqrt(1 - cos^2θ)`
Then,
sin A = `sqrt(1 - cos^2A)` ...(2)
sin2A = 1 – cos2A
sin A = `sqrt(1 - cos^2A)`
Substituting equation (1) in (2),
We get,
sin A = `sqrt(1 - (4/5)^2)`
= `sqrt(1 - (16/25))`
= `sqrt(9/25)`
= `3/4`
Therefore, tan A = `3/5 xx 5/4 = 3/4`
संबंधित प्रश्न
If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
If `cos theta = 12/13`, show that `sin theta (1 - tan theta) = 35/156`
If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃
Evaluate the Following
4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC
If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.
If sin A = `1/2`, then the value of cot A is ______.
Let tan9° = `(1 - sqrt((sqrt(5)k)/m))k` where k = `sqrt(5) + 1` then m is equal to ______.