मराठी

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B. - Mathematics

Advertisements
Advertisements

प्रश्न

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

बेरीज

उत्तर १

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that

cos A = cos B

⇒ `("AD")/("AC") = ("BD")/("BC")`            ...(1)

We have to prove ∠A = ∠B.

To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

`("AB")/("BD") = ("AC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("CP")`           ...(By construction, we have BC = CP)          ...(2)

By using the converse of B.P.T,

CD || BP

⇒ ∠ACD = ∠CPB         ...(Corresponding angles)             ...(3)

And, ∠BCD = ∠CBP          ...(Alternate interior angles)               …(4)

By construction, we have BC = CP

∴ ∠CBP = ∠CPB              ...(Angle opposite to equal sides of a triangle)       …(5)

From equations (3), (4) and (5), we obtain

∠ACD = ∠BCD               …(6)

In ΔCAD and ΔCBD,

∠ACD = ∠BCD               ...[Using equation (6)]

∠CDA = ∠CDB               ...[Both 90°]

Therefore, the remaining angles should be equal.

∴∠CAD = ∠CBD

⇒ ∠A = ∠B

Alternatively,

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that,

cos A = cos B

⇒ `("AD")/("AC") = ("BC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("BC")`

Let `("AD")/("BD") = ("AC")/("BC") = k`

⇒ AD = k × BD                    …(1)

And, AC = k × BC               …(2)

Using Pythagoras theorem for triangles CAD and CBD, we obtain

CD2 = AC2 − AD2           …(3)

And, CD2 = BC2 − BD2               …(4)

From equations (3) and (4), we obtain

AC2 − AD2 = BC2 − BD2

⇒ (k BC)2 − (k BD)2 = BC2 − BD2

⇒ k2 (BC2 − BD2) = BC2 − BD2

⇒ k2 = 1

⇒ k = 1

Putting this value in equation (2), we obtain

AC = BC

⇒ ∠A = ∠B               ...(Angles opposite to equal sides of a triangle)

shaalaa.com

उत्तर २

∠A and ∠B are acute angles

Cos A = cos B S.T ∠A = ∠B

Let us consider right angled triangle ACB.

We have cos A = `"adjacent side"/"Hypotenuse"`

= `("AC")/("AB")`

cos B = `("BC")/("AB")`

cos A = cos B

`("AC")/("AB") = ("BC")/("AB")`

AC = BC

∠A = ∠B

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction to Trigonometry - Exercise 8.1 [पृष्ठ १८१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
पाठ 8 Introduction to Trigonometry
Exercise 8.1 | Q 6 | पृष्ठ १८१
आरडी शर्मा Mathematics [English] Class 10
पाठ 10 Trigonometric Ratios
Exercise 10.1 | Q 33 | पृष्ठ २५

संबंधित प्रश्‍न

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin C, cos C


State whether the following are true or false. Justify your answer.

The value of tan A is always less than 1.


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`


Evaluate the following

sin2 30° + sin2 45° + sin2 60° + sin2 90°


Evaluate the following

tan2 30° + tan2 60° + tan45°


Evaluate the following:

(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)


In ΔABC is a right triangle such that ∠C = 90° ∠A = 45°, BC = 7 units find ∠B, AB and AC


If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.


If cos (81 + θ)° = sin`("k"/3 - theta)^circ` where θ is an acute angle, then the value of k is ______.


3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.


`(sin theta)/(1 + cos theta)` is ______.


The value of cos 0°. cos 1°. cos 2°. cos 3°… cos 89° cos 90° is ______.


If cos A = `4/5`, then the value of tan A is ______.


If 4 tanθ = 3, then `((4 sintheta - costheta)/(4sintheta + costheta))` is equal to ______.


The value of the expression (sin 80° – cos 80°) is negative.


Find the value of sin 0° + cos 0° + tan 0° + sec 0°.


If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.


Evaluate 2 sec2 θ + 3 cosec2 θ – 2 sin θ cos θ if θ = 45°.


In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×