English

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B. - Mathematics

Advertisements
Advertisements

Question

If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.

Sum

Solution 1

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that

cos A = cos B

⇒ `("AD")/("AC") = ("BD")/("BC")`            ...(1)

We have to prove ∠A = ∠B.

To prove this, let us extend AC to P such that BC = CP.

From equation (1), we obtain

`("AB")/("BD") = ("AC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("CP")`           ...(By construction, we have BC = CP)          ...(2)

By using the converse of B.P.T,

CD || BP

⇒ ∠ACD = ∠CPB         ...(Corresponding angles)             ...(3)

And, ∠BCD = ∠CBP          ...(Alternate interior angles)               …(4)

By construction, we have BC = CP

∴ ∠CBP = ∠CPB              ...(Angle opposite to equal sides of a triangle)       …(5)

From equations (3), (4) and (5), we obtain

∠ACD = ∠BCD               …(6)

In ΔCAD and ΔCBD,

∠ACD = ∠BCD               ...[Using equation (6)]

∠CDA = ∠CDB               ...[Both 90°]

Therefore, the remaining angles should be equal.

∴∠CAD = ∠CBD

⇒ ∠A = ∠B

Alternatively,

Let us consider a triangle ABC in which CD ⊥ AB.

It is given that,

cos A = cos B

⇒ `("AD")/("AC") = ("BC")/("BC")`

⇒ `("AD")/("BD") = ("AC")/("BC")`

Let `("AD")/("BD") = ("AC")/("BC") = k`

⇒ AD = k × BD                    …(1)

And, AC = k × BC               …(2)

Using Pythagoras theorem for triangles CAD and CBD, we obtain

CD2 = AC2 − AD2           …(3)

And, CD2 = BC2 − BD2               …(4)

From equations (3) and (4), we obtain

AC2 − AD2 = BC2 − BD2

⇒ (k BC)2 − (k BD)2 = BC2 − BD2

⇒ k2 (BC2 − BD2) = BC2 − BD2

⇒ k2 = 1

⇒ k = 1

Putting this value in equation (2), we obtain

AC = BC

⇒ ∠A = ∠B               ...(Angles opposite to equal sides of a triangle)

shaalaa.com

Solution 2

∠A and ∠B are acute angles

Cos A = cos B S.T ∠A = ∠B

Let us consider right angled triangle ACB.

We have cos A = `"adjacent side"/"Hypotenuse"`

= `("AC")/("AB")`

cos B = `("BC")/("AB")`

cos A = cos B

`("AC")/("AB") = ("BC")/("AB")`

AC = BC

∠A = ∠B

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.1 [Page 181]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.1 | Q 6 | Page 181
RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.1 | Q 33 | Page 25

RELATED QUESTIONS

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin A, cos A


If cot θ = `7/8`, evaluate cot2 θ.


In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

  1.  sin A cos C + cos A sin C
  2. cos A cos C − sin A sin C

State whether the following are true or false. Justify your answer.

The value of tan A is always less than 1.


State whether the following are true or false. Justify your answer.

sec A = `12/5` for some value of angle A.


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan alpha = 5/12`


If sin θ = `12/13`, Find `(sin^2 θ - cos^2 θ)/(2sin θ cos θ) × 1/(tan^2 θ)`.


If `sin theta = a/b` find sec θ + tan θ in terms of a and b.


if `sin theta = 3/4`  prove that `sqrt(cosec^2 theta - cot)/(sec^2 theta - 1) = sqrt7/3`


If Cosec A = 2 find `1/(tan A) + (sin A)/(1 + cos A)`


Evaluate the Following

4(sin4 60° + cos4 30°) − 3(tan2 60° − tan2 45°) + 5 cos2 45°


Evaluate the Following

`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`


Evaluate the Following

(cos 0° + sin 45° + sin 30°)(sin 90° − cos 45° + cos 60°)


Find the value of x in the following :

`2 sin  x/2 = 1`


Find the value of x in the following :

cos 2x = cos 60° cos 30° + sin 60° sin 30°


sin (45° + θ) – cos (45° – θ) is equal to ______.


If cos (40° + A) = sin 30°, then value of A is ______.


If cos A = `4/5`, then the value of tan A is ______.


If sin A = `1/2`, then the value of cot A is ______.


Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×