English

In ΔABC, right angled at B. If tan A = 13 , find the value of i. sin A cos C + cos A sin C ii. cos A cos C − sin A sin C - Mathematics

Advertisements
Advertisements

Questions

In ΔABC, right angled at B. If tan A = `1/sqrt3` , find the value of

  1.  sin A cos C + cos A sin C
  2. cos A cos C − sin A sin C

If ΔABC, ∠B = 90° and Tan A = `1/sqrt(3)`. Prove that

  1. Sin A. cos C + cos A. Sin c = 1
  2. cos A. cos C - sin A. sin C = 0
Sum

Solution 1

tan A = `1/sqrt3`

`"BC"/"AB"=1/sqrt3`

If BC is k, then AB will be `sqrt3k`, where k is a positive integer.

In ΔABC,

AC2 = AB2 + BC2

= `(sqrt3k)^2 + (k)^2`

= 3k2 + k

= 4k2

∴ AC = 2k

sin A = `("Side adjacent to ∠A")/"Hypotenuse" = ("BC")/("AC") = k/(2k) = 1/2`

cos A = `("Side adjacent to ∠A")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`

sin C = `("Side adjacent to ∠C")/"Hypotenuse" = ("AB")/("AC") = (sqrt3k)/(2k) = sqrt3/2`

cos C = `("Side adjacent to ∠C")/"Hypotenuse" = ("BC")/("AC") = (k)/(2k) = 1/2`

(i) sin A cos C + cos A sin C

= `(1/2)(1/2)+(sqrt3/2)(sqrt3/2) `

= `1/4 + 3/4`

= `4/4`

= 1

(ii) cos A cos C − sin A sin C

= `(sqrt3/2)(1/2)-(1/2)(sqrt3/2)`

= `sqrt3/4 - sqrt3/4`

= 0

shaalaa.com

Solution 2

In ΔABC, ∠B = 90°,

As, tan A = `1/sqrt(3)`

⇒ `("BC")/("AB") = 1/sqrt(3)`

Let BC = x and AB = x = `sqrt(3)`

Using Pythagoras the get

AC = `sqrt("AB"^2 + "BC"^2)`

= `sqrt((xsqrt(3))^2 + x^2)`

= `sqrt(3x^2 + x^2)`

= `sqrt(4x^2)`

= 2x

Now,

(i) LHS = sin A. cos C + cos A . sin C

= `("BC")/("AC") . ("BC")/("AC") + ("AB")/("AC") .("AB")/("AC")`

= `(("BC")/("AC"))^2 + (("AB")/("AC"))^2`

= `(x/(2x))^2 + ((xsqrt(3))/(2x))^2`

= `1/4 +3/4`

= 1

= RHS

(ii) LHS = cos A . cos C - sinA . sinC

= `("AB")/("AC") .("BC")/("AC") -("BC")/("AC") .("AB")/("AC")`

= `(xsqrt(3))/(2x) .x/2x - x/2x.(xsqrt(3))/(2x)`

= `sqrt(3)/4 - sqrt(3)/4`

= 0

= RHS 

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.1 [Page 181]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.1 | Q 9 | Page 181
RS Aggarwal Mathematics [English] Class 10
Chapter 5 Trigonometric Ratios
Exercises | Q 29

RELATED QUESTIONS

In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:

sin A, cos A


 In Given Figure, find tan P – cot R.


If ∠A and ∠B are acute angles such that cos A = cos B, then show that ∠A = ∠B.


If cot θ =` 7/8` evaluate `((1+sin θ )(1-sin θ))/((1+cos θ)(1-cos θ))`


If 4 tan θ = 3, evaluate `((4sin theta - cos theta + 1)/(4sin theta + cos theta - 1))`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`cos A = 4/5`


In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.

`tan alpha = 5/12`


In the following, trigonometric ratios are given. Find the values of the other trigonometric ratios.

`sin theta = sqrt3/2`


If `tan theta = a/b`, find the value of `(cos theta + sin theta)/(cos theta - sin theta)`


if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`


If `tan theta = 24/7`, find that sin 𝜃 + cos 𝜃


Evaluate the following

tan2 30° + tan2 60° + tan45°


If cosec θ - cot θ = `1/3`, the value of (cosec θ + cot θ) is ______.


`(sin theta)/(1 + cos theta)` is ______.


The value of the expression `[(sin^2 22^circ + sin^2 68^circ)/(cos^2 22^circ + cos^2 68^circ) + sin^2 63^circ + cos 63^circ sin 27^circ]` is ______.


If f(x) = `3cos(x + (5π)/6) - 5sinx + 2`, then maximum value of f(x) is ______.


If b = `(3 + cot  π/8 + cot  (11π)/24 - cot  (5π)/24)`, then the value of `|bsqrt(2)|` is ______.


In ΔBC, right angled at C, if tan A = `8/7`, then the value of cot B is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×