Advertisements
Advertisements
Question
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
Solution
`cot theta = "๐๐๐๐๐๐๐๐ก ๐ ๐๐๐"/"๐๐๐๐๐ ๐๐ก๐ ๐ ๐๐๐"`
Let x be the hypotenuse by applying Pythagoras theorem.
๐ด๐ถ2 = ๐ด๐ต2 + ๐ต๐ถ2
๐ฅ2 = 16 + 9
`x^2 = 25 => x = 5`
`sec theta = (AC)/(AB) = 5/4`
`cosec theta = (AC)/(AB) = 5/4`
On substituting in equation we get
`sqrt((sec theta - cosec theta)/(sec theta + cosec theta)) = sqrt((5/3 - 5/4)/(5/3 + 5/4))`
`= sqrt(((20 - 15)/12)/((20 + 15)/12)) = sqrt(5/35) = 1/sqrt7`
APPEARS IN
RELATED QUESTIONS
In ΔPQR, right angled at Q, PR + QR = 25 cm and PQ = 5 cm. Determine the values of sin P, cos P and tan P.
If sec θ = `13/5, "show that" (2sinθ - 3 cosθ)/(4sinθ - 9cosθ) = 3`.
if `cos theta = 3/5`, find the value of `(sin theta - 1/(tan theta))/(2 tan theta)`
Evaluate the following:
(cosec2 45° sec2 30°)(sin2 30° + 4 cot2 45° − sec2 60°)
Find the value of x in the following :
`2 sin x/2 = 1`
3 sin² 20° – 2 tan² 45° + 3 sin² 70° is equal to ______.
5 tan² A – 5 sec² A + 1 is equal to ______.
Find the value of sin 45° + cos 45° + tan 45°.
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
If cosec θ = `("p" + "q")/("p" - "q")` (p ≠ q ≠ 0), then `|cot(π/4 + θ/2)|` is equal to ______.