English

Prove that θθθθtanθ1-cotθ+cotθ1-tanθ = 1 + sec θ cosec θ - Mathematics

Advertisements
Advertisements

Question

Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ

Sum

Solution

LHS = `tanθ/(1 - cot θ) + cot θ/(1 - tan θ)`

= `tan θ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)`

= `(tan^2θ)/(tan θ - 1) + 1/(tanθ(1 - tan θ)`

= `(tan^3θ - 1)/(tan θ(tan θ - 1))`

= `((tan θ - 1)(tan^3θ + tanθ + 1))/(tanθ(tan θ - 1))`

= `((tan^3θ + tan θ + 1))/tanθ`

= tan θ + 1 + sec

= 1 + tan θ + sec θ

= `1 + sinθ/cosθ + cosθ/sinθ`

= `1 + (sin^2θ + cos^2θ)/(sinθ cosθ)`

= `1 + 1/(sinθ cosθ)`

= 1 + sec θ cosec θ

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Basic Sample
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×