Advertisements
Advertisements
Question
Prove that `tan θ/(1 - cot θ) + cot θ/(1 - tanθ)` = 1 + sec θ cosec θ
Solution
LHS = `tanθ/(1 - cot θ) + cot θ/(1 - tan θ)`
= `tan θ/(1 - 1/tanθ) + (1/tanθ)/(1 - tanθ)`
= `(tan^2θ)/(tan θ - 1) + 1/(tanθ(1 - tan θ)`
= `(tan^3θ - 1)/(tan θ(tan θ - 1))`
= `((tan θ - 1)(tan^3θ + tanθ + 1))/(tanθ(tan θ - 1))`
= `((tan^3θ + tan θ + 1))/tanθ`
= tan θ + 1 + sec
= 1 + tan θ + sec θ
= `1 + sinθ/cosθ + cosθ/sinθ`
= `1 + (sin^2θ + cos^2θ)/(sinθ cosθ)`
= `1 + 1/(sinθ cosθ)`
= 1 + sec θ cosec θ
APPEARS IN
RELATED QUESTIONS
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin A, cos A
In ΔABC right angled at B, AB = 24 cm, BC = 7 m. Determine:
sin C, cos C
State whether the following are true or false. Justify your answer.
sec A = `12/5` for some value of angle A.
If 3 cot θ = 2, find the value of `(4sin theta - 3 cos theta)/(2 sin theta + 6cos theta)`.
If tan θ = `a/b` prove that `(a sin theta - b cos theta)/(a sin theta + b cos theta) = (a^2 - b^2)/(a^2 + b^2)`
if `sec A = 17/8` verify that `(3 - 4sin^2A)/(4 cos^2 A - 3) = (3 - tan^2 A)/(1 - 3 tan^2 A)`
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
If b = `(3 + cot π/8 + cot (11π)/24 - cot (5π)/24)`, then the value of `|bsqrt(2)|` is ______.
If `θ∈[(5π)/2, 3π]` and 2cosθ + sinθ = 1, then the value of 7cosθ + 6sinθ is ______.
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.