Advertisements
Advertisements
Question
Evaluate the following
sin 45° sin 30° + cos 45° cos 30°
Solution
sin 45° sin 30° + cos 45° cos 30° …...(i)
We know that by trigonometric ratios we have,
`sin 45^@ = 1/sqrt2 sin 30^@ = 1/2`
`cos 45^@ = 1/sqrt2 cos 30^@ = sqrt3/2`
Substituting the values in (i) we get
`1/sqrt2 . 1/2 + 1/sqrt2 . sqrt3/2`
`= 1/sqrt2 . sqrt3/(2sqrt2) = (sqrt3 + 1)/(2sqrt2)`
APPEARS IN
RELATED QUESTIONS
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`tan theta = 8/15`
In the following, one of the six trigonometric ratios is given. Find the values of the other trigonometric ratios.
`cot theta = 12/5`
if `cot theta = 3/4` prove that `sqrt((sec theta - cosec theta)/(sec theta +cosec theta)) = 1/sqrt7`
Evaluate the following
cos 60° cos 45° - sin 60° ∙ sin 45°
Evaluate the Following
`cot^2 30^@ - 2 cos^2 60^circ- 3/4 sec^2 45^@ - 4 sec^2 30^@`
If cos A = `4/5`, then the value of tan A is ______.
In ΔABC, ∠ABC = 90° and ∠ACB = θ. Then write the ratios of sin θ and tan θ from the figure.
Find an acute angle θ when `(cos θ - sin θ)/(cos θ + sin θ) = (1 - sqrt(3))/(1 + sqrt(3))`
If θ is an acute angle and sin θ = cos θ, find the value of tan2 θ + cot2 θ – 2.
In a right triangle PQR, right angled at Q. If tan P = `sqrt(3)`, then evaluate 2 sin P cos P.