English

Evaluate the following in the simplest form: sin 60° cos 30° + cos 60° sin 30° - Mathematics

Advertisements
Advertisements

Questions

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°

Evaluate the following:

sin 60° cos 30° + cos 60° sin 30°

Sum

Solution 1

sin 60° cos 30° + cos 60° sin 30°

= `\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}+\frac{1}{2}\times\frac{1}{2}`

= `\frac{3}{4}+\frac{1}{4}`

= 1

shaalaa.com

Solution 2

sin 60° cos 30° + cos 60° sin 30°       ...(i)

By trigonometric ratios we have,

`sin 60° = sqrt3/2  sin 30°`

= `1/2`

`cos 30° = sqrt3/2  cos 60°`

= `1/2`

Substituting above values in (i), we get

`sqrt3/2 . sqrt3/2 + 1/2 . 1/2`

= `3/4 + 1/4`

= `4/4`

= 1

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 1.1 | Page 187
RD Sharma Mathematics [English] Class 10
Chapter 10 Trigonometric Ratios
Exercise 10.2 | Q 2 | Page 41

RELATED QUESTIONS

Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate the following

`sec 11^@/(cosec 79^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.


Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B


If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


Find the value of x in the following: `sqrt(3)sin x` = cos x


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×