Advertisements
Advertisements
Questions
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
sin 60° cos 30° + cos 60° sin 30°
Solution 1
sin 60° cos 30° + cos 60° sin 30°
= `\frac{\sqrt{3}}{2}\times \frac{\sqrt{3}}{2}+\frac{1}{2}\times\frac{1}{2}`
= `\frac{3}{4}+\frac{1}{4}`
= 1
Solution 2
sin 60° cos 30° + cos 60° sin 30° ...(i)
By trigonometric ratios we have,
`sin 60° = sqrt3/2 sin 30°`
= `1/2`
`cos 30° = sqrt3/2 cos 60°`
= `1/2`
Substituting above values in (i), we get
`sqrt3/2 . sqrt3/2 + 1/2 . 1/2`
= `3/4 + 1/4`
= `4/4`
= 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following
`sec 11^@/(cosec 79^@)`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Find the value of x in the following: `sqrt(3)sin x` = cos x
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`