Advertisements
Advertisements
Question
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Solution
`(cos 45°)/(sec 30° + cosec 30°)`
= `(1/sqrt2)/(2/sqrt3+2)`
= `(1/sqrt2)/((2 + 2sqrt3)/sqrt3)`
= `sqrt3/(sqrt2(2+2sqrt3))`
= `sqrt3/(2sqrt2+2sqrt6)`
= `(sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`
= `(2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2)`
= `(2sqrt3(sqrt6-sqrt2))/(24-8)`
= `(2sqrt3(sqrt6-sqrt2))/16`
= `(sqrt18-sqrt6)/8`
= `(3sqrt2 - sqrt6)/8`
APPEARS IN
RELATED QUESTIONS
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
sin 2A = 2 sin A is true when A = ______.
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If sin x = cos x and x is acute, state the value of x
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`