English

Evaluate the following: cos45°sec30°+cosec 30° - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`

Sum

Solution

`(cos 45°)/(sec 30° + cosec  30°)`

= `(1/sqrt2)/(2/sqrt3+2)`

= `(1/sqrt2)/((2  +  2sqrt3)/sqrt3)`

= `sqrt3/(sqrt2(2+2sqrt3))`

= `sqrt3/(2sqrt2+2sqrt6)`

= `(sqrt3(2sqrt6-2sqrt2))/(((2sqrt6)+2sqrt2)(2sqrt6-2sqrt2))`

= `(2sqrt3(sqrt6-sqrt2))/((2sqrt6)^2 - (2sqrt2)^2)`

= `(2sqrt3(sqrt6-sqrt2))/(24-8)`

= `(2sqrt3(sqrt6-sqrt2))/16`

= `(sqrt18-sqrt6)/8`

= `(3sqrt2 - sqrt6)/8`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Introduction to Trigonometry - Exercise 8.2 [Page 187]

APPEARS IN

NCERT Mathematics [English] Class 10
Chapter 8 Introduction to Trigonometry
Exercise 8.2 | Q 1.3 | Page 187

RELATED QUESTIONS

Evaluate the following in the simplest form:

sin 60° cos 30° + cos 60° sin 30°


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


sin 2A = 2 sin A is true when A = ______.


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

(sin 72° + cos 18°) (sin 72° − cos 18°)


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


If sin x = cos x and x is acute, state the value of x


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Find the value of x in the following:  2 sin3x = `sqrt(3)`


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Find the value of the following:

(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×