English

Prove that: cos 30° . cos 60° - sin 30° . sin 60°  = 0 - Mathematics

Advertisements
Advertisements

Question

Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0

Sum

Solution

LHS=cos 30°. cos 60° - sin 30°. sin 60°

= `(sqrt3)/(2) (1)/(2) – (1)/(2) (sqrt3)/(2) = (sqrt3)/(4) – (sqrt3)/(4) = 0 = RHS`

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [Page 291]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.2 | Page 291

RELATED QUESTIONS

Find the value of x in the following :

tan 3x = sin 45º cos 45º + sin 30º


Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º


Evaluate the following:

`(cos 45°)/(sec 30° + cosec  30°)`


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


Show that tan 48° tan 23° tan 42° tan 67° = 1


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)


Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Prove that

tan (55° − θ) − cot (35° + θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


find the value of: cosec2 60° - tan2 30°


For any angle θ, state the value of: sin2 θ + cos2 θ


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×