Advertisements
Advertisements
Question
Prove that:
cosec2 45° - cot2 45° = 1
Solution
LHS= cosec2 45° - cot2 45°
= `(sqrt2)^2 –1^2 = 2 – 1 = 1 = RHS`
APPEARS IN
RELATED QUESTIONS
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: tan 30° tan 60°
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If sin x = cos y; write the relation between x and y, if both the angles x and y are acute.
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: tan x = sin45° cos45° + sin30°
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
Verify the following equalities:
sin2 60° + cos2 60° = 1
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°