Advertisements
Advertisements
Question
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
Solution
Given that A = 30°
LHS = `(cos^3 "A" – cos 3"A")/(cos "A") + (sin^3 "A" + sin 3"A")/(sin "A")`
= `(cos^3 30° – cos3 (30°))/(cos 30°) + (sin^3 30° + sin3 (30°))/(sin 30°)`
= `((sqrt3/2)^3 – 0)/(sqrt3/2) + ((1/2)^3 + 1)/(1/2)`
= `(sqrt3/2)^2 + (9/8)/(1/2)`
= `(3)/(4) + (9)/(4)`
= `(12)/(4)`
= 3
= RHS
APPEARS IN
RELATED QUESTIONS
`(2 tan 30°)/(1+tan^2 30°)` = ______.
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate cos 48° − sin 42°
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove that
cosec (67° + θ) − sec (23° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Evaluate: sin2 60° + 2tan 45° – cos2 30°.