English

If A = 30°; show that: cos 3 A – cos 3 A cos A + sin 3 A + sin 3 A sin A = 3 - Mathematics

Advertisements
Advertisements

Question

If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`

Sum

Solution

Given that A = 30°

LHS = `(cos^3 "A" – cos 3"A")/(cos "A") + (sin^3 "A" + sin 3"A")/(sin "A")`

= `(cos^3 30° – cos3 (30°))/(cos 30°) + (sin^3 30° + sin3 (30°))/(sin 30°)`

= `((sqrt3/2)^3 – 0)/(sqrt3/2) + ((1/2)^3 + 1)/(1/2)`

= `(sqrt3/2)^2 + (9/8)/(1/2)`

= `(3)/(4) + (9)/(4)`

= `(12)/(4)`

= 3

= RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [Page 293]

APPEARS IN

Selina Concise Mathematics [English] Class 9 ICSE
Chapter 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.7 | Page 293

RELATED QUESTIONS

`(2 tan 30°)/(1+tan^2 30°)` = ______.


`(1- tan^2 45°)/(1+tan^2 45°)` = ______


`(2 tan 30°)/(1-tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate cos 48° − sin 42°


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following

`sec 11^@/(cosec 79^@)`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove that

cosec (67° + θ) − sec (23° − θ) = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sec78° + cosec56°


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: `sqrt(3)`tan 2x = cos60° + sin45° cos45°


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify cos3A = 4cos3A – 3cosA, when A = 30°


Evaluate: sin2 60° + 2tan 45° – cos2 30°.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×