Advertisements
Advertisements
Question
Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
Solution
`(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`
= `((sqrt(3))^2 + 4 xx (1/sqrt(2))^2 + 3 xx (2/sqrt(3))^2 + 5 xx 0)/(2 + 2 - (sqrt(3))^2`
= `(3 + 4 xx (1)/(2) + 3 xx (4)/(3) + 0)/(2 + 2 - 3)`
= `(3 + 2 + 4)/(4 - 3)`
= 9.
APPEARS IN
RELATED QUESTIONS
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If sin x = cos x and x is acute, state the value of x
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
find the value of: cosec2 60° - tan2 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10