Advertisements
Advertisements
Question
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Solution
We have to find:
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Since `cot(90^@ - theta) = tan theta` and `cos (90^@- theta) = sin theta`
`(cot 40^@)/(tan 50^@) - 1/2 ((cos 35^@)/(sin 55^@)) = cot(90^@ - 50^@)/ tan 50^@ - 1/2 (cos(90^@ - 55^@)/sin 55^@)`
`= tan 50^@/tan 50^@ - 1/2 ((sin 55^@)/(sin 55^@))`
`= 1 - 1/2`
`= 1/2`
So value of `(cot 40^@)/(tan 50^@) - 1/2 ((cos 35^@)/(sin 55^@)) " is " 1/2`
APPEARS IN
RELATED QUESTIONS
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: `((cot30° + 1)/(cot30° -1))^2 = (sec30° + 1)/(sec30° - 1)`
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
Verify cos3A = 4cos3A – 3cosA, when A = 30°