Advertisements
Advertisements
प्रश्न
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
उत्तर
We have to find:
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Since `cot(90^@ - theta) = tan theta` and `cos (90^@- theta) = sin theta`
`(cot 40^@)/(tan 50^@) - 1/2 ((cos 35^@)/(sin 55^@)) = cot(90^@ - 50^@)/ tan 50^@ - 1/2 (cos(90^@ - 55^@)/sin 55^@)`
`= tan 50^@/tan 50^@ - 1/2 ((sin 55^@)/(sin 55^@))`
`= 1 - 1/2`
`= 1/2`
So value of `(cot 40^@)/(tan 50^@) - 1/2 ((cos 35^@)/(sin 55^@)) " is " 1/2`
APPEARS IN
संबंधित प्रश्न
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sec78° + cosec56°
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: sin2 60° + 2tan 45° – cos2 30°.