Advertisements
Advertisements
प्रश्न
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
उत्तर
We have to find: `((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Since `sin(90^@ - theta) = cos theta` and `cos(90^@ - theta) = sintheta`
`(sin 27^@/cos 63^@)^2 - (cos 63^@/sin 27^@)^2 = (sin (90^@ - 63^@)/cos 63^@)^2 - ((cos (90^@ - 27^2))/sin 27^@)^2`
`= ((cos 63^@)/(cos 63^@))^2 - ((sin 27)/sin 27^@)^2`
= 1 -1
= 0
So value of `((sin 27^@)/cos 63^@)^2 - ((cos 63^@)/(sin 27^@))^2` is 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`cos 19^@/sin 71^@`
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`