मराठी

Given A = 60° and B = 30°, prove that : cos (A + B) = cos A cos B - sin A sin B - Mathematics

Advertisements
Advertisements

प्रश्न

Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B

बेरीज

उत्तर

Given A = 60° and B = 30°

LHS = cos(A+B)
= cos(60° + 30°)
= cos90°
=0

RHS = cos A cos B – sin A sin B
= cos 60° cos 30° – sin 60° sin 30°

= `(1)/(2) (sqrt3)/(2) – (sqrt3)/(2) (1)/(2)`

=`(sqrt3)/(4) – (sqrt3)/(4)`

= 0
LHS  = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 1.2 | पृष्ठ २९३

संबंधित प्रश्‍न

An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0


Prove the following :

`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ -  theta)) + tan (90^@ - theta)/cot theta = 2`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate:

`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Evaluate tan 35° tan 40° tan 50° tan 55°


Prove that:
sin 60° = 2 sin 30° cos 30°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


find the value of: tan 30° tan 60°


find the value of: cos2 60° + sin2 30°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


Prove that:

cosec2 45°  - cot2 45°  = 1


Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0


prove that:

tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`


For any angle θ, state the value of: sin2 θ + cos2 θ


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A


Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×