Advertisements
Advertisements
प्रश्न
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
उत्तर
Sin 50° = sin (90° - 40°) = cos 40°
Cosec 40° = cosec (90° - 50°) = sec 50°
Cos 50° = cos (90° - 40°) = sin 40°
`=> cos 40^@/cos 40^@ + (sec 50^@)/(sec 50^@) - 4 sin 40^@ cosec 40^@`
1 + 1 – 4 = − 2 [∵ Sin 40° cosec 40° = 1]
APPEARS IN
संबंधित प्रश्न
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: sin2 30° + cos2 30°+ cot2 45°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
Without using tables, find the value of the following: `(sin30°)/(sin45°) + (tan45°)/(sec60°) - (sin60°)/(cot45°) - (cos30°)/(sin90°)`
If sin(A +B) = 1(A -B) = 1, find A and B.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.