Advertisements
Advertisements
प्रश्न
find the value of: sin2 30° + cos2 30°+ cot2 45°
उत्तर
sin2 30° + cos230° + cot2 45° = `(1/2)^2 + (sqrt3/2)^2 + 1^2`
= `(1)/(4) + (3)/(4) + 1`
= 2
APPEARS IN
संबंधित प्रश्न
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
sin 2A = 2 sin A is true when A = ______.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
Find the value of:
tan2 30° + tan2 45° + tan2 60°
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Find the value of x in the following: 2 sin3x = `sqrt(3)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
If sin 30° = x and cos 60° = y, then x2 + y2 is
If 2 sin 2θ = `sqrt(3)` then the value of θ is
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.