Advertisements
Advertisements
प्रश्न
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
उत्तर
A = 30° and B = 60°
L.H.S.
= `(sin("A" -"B"))/(sin"A" . sin"B")`
= `(sin(30° - 60°))/(sin30° xx sin60°)`
= `(-sin"30°)/(sin30° xx sin60°)`
= `(-(1)/(2))/((1)/(2) xx sqrt(3)/(2)`
= `-(2)/sqrt(3)`
R.H.S.
= cotB - cotA
= cot60° - cot30°
= `(1)/sqrt(3) - sqrt(3)`
= `(1 - 3)/sqrt(3)`
= `-(2)/sqrt(3)`
⇒ `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA.
APPEARS IN
संबंधित प्रश्न
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
Show that tan 48° tan 23° tan 42° tan 67° = 1
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
Prove that:
sin 60° = 2 sin 30° cos 30°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
find the value of: cos2 60° + sec2 30° + tan2 45°
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
prove that:
cos (2 x 30°) = `(1 – tan^2 30°)/(1+tan^2 30°)`
secθ . Cot θ= cosecθ ; write true or false
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
Prove that : sec245° - tan245° = 1
If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`