Advertisements
Advertisements
प्रश्न
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
sin67° + cos75°
उत्तर
\[\sin67^\circ + \cos75c\]
\[ = \cos\left( 90^\circ - 67^\circ \right) + \sin\left( 90^\circ - 75^\circ \right)\]
\[ = \cos23^\circ + \sin15^\circ\]
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
The value of 5 sin2 90° – 2 cos2 0° is ______.