Advertisements
Advertisements
प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
उत्तर
∵ A + B + C = 180° (a.s.p. of ∆)
B + C = 180° – A
`( \frac{B+C}{2})=90^\circ -\frac{A}{2}`
`\sin ( \frac{B+C}{2})=\sin ( 90^\circ -\frac{A}{2})`
`\sin ( \frac{B+C}{2} )=\cos \frac{A}{2} `
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(cos^3"A" – cos 3"A")/(cos "A") + (sin^3"A" + sin3"A")/(sin"A") = 3`
If 2 sin 2θ = `sqrt(3)` then the value of θ is