Advertisements
Advertisements
प्रश्न
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
उत्तर
tan θ = cotθ
tan θ = `(1)/(tanθ )`
tan2 θ = 1
tan θ = 1
tan θ = tan 45°
θ = 45°
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
sin 2A = 2 sin A is true when A = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Prove that:
sin 60° = 2 sin 30° cos 30°
If sin x = cos x and x is acute, state the value of x
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
For any angle θ, state the value of: sin2 θ + cos2 θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify cos3A = 4cos3A – 3cosA, when A = 30°
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of 5 sin2 90° – 2 cos2 0° is ______.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.