मराठी

Prove that: ( tan 60 ° + 1 tan 60 ° – 1 ) 2 = 1 + cos 30 ° 1 – cos 30 ° - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`((tan60°  + 1)/(tan 60°  – 1))^2 = (1+ cos 30°) /(1– cos 30°) `

बेरीज

उत्तर

LHS = `((tan60°+ 1)/(tan 60° – 1))^2`

= `((sqrt3 +1)/(sqrt3 - 1))^2`

= `(sqrt3 +1)^2/(sqrt3 -1)^2`

= `((sqrt3)^2+(1)^2+2xxsqrt3xx1)/((sqrt3)^2+(1)^2-2xxsqrt3xx1)`

= `(3+1+2sqrt3)/(3+1-2sqrt3)`

= `(4 + 2sqrt3)/(4 -2sqrt3 )`

= `(2(2+sqrt3))/(2(2- sqrt3)`

= `(2+sqrt3)/(2-sqrt3)`

R.H.S

= `(1+ cos 30°) /(1- cos 30°)` 

= `(1+sqrt3/2)/(1-sqrt3/2)`

= `((2 + sqrt3)/2)/((2 - sqrt3)/2)`

= `(2+sqrt3)/(2-sqrt3)`

L.H.S = R.H.S

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.5 | पृष्ठ २९१

संबंधित प्रश्‍न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


sin 2A = 2 sin A is true when A = ______.


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


Evaluate cos 48° − sin 42°


Evaluate the following :

`tan 35^@/cot 55^@  + cot 78^@/tan 12^@  -1`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cot 85° + cos 75°


If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


If sec A = cosec A and 0° ∠A ∠90°, state the value of A


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos2


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB


If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


If 2 sin 2θ = `sqrt(3)` then the value of θ is 


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×