Advertisements
Advertisements
प्रश्न
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
उत्तर
LHS = `((tan60°+ 1)/(tan 60° – 1))^2`
= `((sqrt3 +1)/(sqrt3 - 1))^2`
= `(sqrt3 +1)^2/(sqrt3 -1)^2`
= `((sqrt3)^2+(1)^2+2xxsqrt3xx1)/((sqrt3)^2+(1)^2-2xxsqrt3xx1)`
= `(3+1+2sqrt3)/(3+1-2sqrt3)`
= `(4 + 2sqrt3)/(4 -2sqrt3 )`
= `(2(2+sqrt3))/(2(2- sqrt3)`
= `(2+sqrt3)/(2-sqrt3)`
R.H.S
= `(1+ cos 30°) /(1- cos 30°)`
= `(1+sqrt3/2)/(1-sqrt3/2)`
= `((2 + sqrt3)/2)/((2 - sqrt3)/2)`
= `(2+sqrt3)/(2-sqrt3)`
L.H.S = R.H.S
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate cos 48° − sin 42°
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
If A = B = 45° ,
show that:
sin (A - B) = sin A cos B - cos A sin B
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`
Without using tables, evaluate the following: sin230° cos245° + 4tan230° + sin290° + cos20°
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
If A = B = 45°, verify that sin (A - B) = sin A .cos B - cos A.sin B
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
If 2 sin 2θ = `sqrt(3)` then the value of θ is
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`
Find the value of x if `2 "cosec"^2 30 + x sin^2 60 - 3/4 tan^2 30` = 10