मराठी

Prove that: 3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

3 cosec2 60°  - 2 cot2 30°  + sec2 45°  = 0

बेरीज

उत्तर

LHS =3 cosec260° – 2 cot230° + sec245°

=`3(2/sqrt3)^2 – 2(sqrt3)^2 + (sqrt2)^2`

= `3xx4/3-2xx3+2`

= 4 – 6 + 2

= 0

= RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (A) [पृष्ठ २९१]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (A) | Q 3.6 | पृष्ठ २९१

संबंधित प्रश्‍न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


If x = 30°, verify that

(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`

(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`


If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1


sin 2A = 2 sin A is true when A = ______.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following 

sec 50º sin 40° + cos 40º cosec 50º 


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Express cos 75° + cot 75° in terms of angles between 0° and 30°.


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Evaluate tan 35° tan 40° tan 50° tan 55°


Evaluate: `sin 18^@/cos 72^@  + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


For any angle θ, state the value of: sin2 θ + cos2 θ


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`


Without using table, find the value of the following: `(tan^2 60° + 4cos^2 45° + 3sec^2 30° + 5cos90°)/(cosec30° + sec60° - cot^2 30°)`


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×