Advertisements
Advertisements
प्रश्न
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
उत्तर
Given that AB = BC = x
∴ AC = `sqrt(AB^2+BC^2) = sqrt(x^2 + x^2) = xsqrt2`
cos 45° =`"BC"/"AC" = x/(xsqrt2) = 1/sqrt2`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Evaluate the following :
(sin 72° + cos 18°) (sin 72° − cos 18°)
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `(2sin 68)/cos 22 - (2 cot 15^@)/(5 tan 75^@) - (8 tan 45^@ tan 20^@ tan 40^@ tan 50^@ tan 70^@)/5`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cot65° + tan49°
Given A = 60° and B = 30°,
prove that : sin (A + B) = sin A cos B + cos A sin B
prove that:
tan (2 x 30°) = `(2 tan 30°)/(1– tan^2 30°)`
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
cos 2A = cos4 A - sin4 A
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.