मराठी

If A = 30°; show that: cos 2A = cos4 A - sin4 A - Mathematics

Advertisements
Advertisements

प्रश्न

If A = 30°;
show that:
cos 2A = cos4 A - sin4 A

बेरीज

उत्तर

Given that A = 30°

LHS = cos 2A

= cos 2(30°)

= cos 60°

= `(1)/(2)`

RHS = `cos^4"A" – sin^4"A"`

= `cos^4 30° – sin^4 30° `

= `(sqrt3/2)^4 – (1/2)^4`

= `(9)/(16) –  (1)/(16)`

= `(1)/(2)`

LHS = RHS

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
पाठ 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 4.3 | पृष्ठ २९३

संबंधित प्रश्‍न

Show that:

(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`

(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`


Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate the following :

`(sin 21^@)/(cos 69^@)`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cos 78° + sec 78°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

 sin 67° + cos 75°


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following :

`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`


Evaluate: `cos 58^@/sin 32^@  + sin 22^@/cos 68^@  - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

sin67° + cos75° 


Find the value of:

tan2 30° + tan2 45° + tan2 60°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


find the value of: cos2 60° + sin2 30°


find the value of :

`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.


Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`


Find the value of x in the following: `2sin  x/(2)` = 1


If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B


If A = B = 45°, verify that cos (A − B) = cos A. cos B + sin A. sin B


If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.


Verify the following equalities:

1 + tan2 30° = sec2 30°


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°


If sin(A + B) = 1 and cos(A – B)= `sqrt(3)/2`, 0° < A + B ≤ 90° and A > B, then find the measures of angles A and B.


The value of 5 sin2 90° – 2 cos2 0° is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×