Advertisements
Advertisements
प्रश्न
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
उत्तर
tan 45° = 1, cosec 30° = 2, sec 60° = 2, cot 45° = 1, tan 45°, sin 90° = 1, cos 0° = 1
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ) = 1/2 + 2/1 - (5(1))/(2(1))`
= `1/2 + 2/1 - 5/2`
= `(1 + 4 - 5)/2`
= `0/2`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Prove the following :
`(cos(90°−A) sin(90°−A))/tan(90°−A) - sin^2 A = 0`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
Prove that:
sin 60° = 2 sin 30° cos 30°
find the value of: tan 30° tan 60°
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: sec30° cosec60° + cos60° sin30°.
Find the value of x in the following: 2 sin3x = `sqrt(3)`
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).