Advertisements
Advertisements
प्रश्न
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
उत्तर
tan 45° = 1, cosec 30° = 2, sec 60° = 2, cot 45° = 1, tan 45°, sin 90° = 1, cos 0° = 1
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ) = 1/2 + 2/1 - (5(1))/(2(1))`
= `1/2 + 2/1 - 5/2`
= `(1 + 4 - 5)/2`
= `0/2`
= 0
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`tan 10^@/cot 80^@`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `(3 cos 55^@)/(7 sin 35^@) - (4(cos 70 cosec 20^@))/(7(tan 5^@ tan 25^@ tan 45^@ tan 65^@ tan 85^@))`
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is