Advertisements
Advertisements
प्रश्न
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
उत्तर
sin 90° = 1, cos 60° = `1/2`, cos 45° = `1/sqrt(2)`, sin 30° = `1/2`, cos 0° = 1
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
= `(1 + 1/2 + 1/sqrt(2)) xx (1/1 + 1 - 1/sqrt(2))`
= `((2sqrt(2) + sqrt(2) + 2)/(2sqrt(2))) xx ((sqrt(2) + 2sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2) + 2)/(2sqrt(2))) xx ((3sqrt(2) - 2)/(2sqrt(2)))`
= `((3sqrt(2))^2 - (2)^2)/8`
= `(9(2) - 4)/8`
= `(18 - 4)/8`
= `14/8`
= `7/4`
APPEARS IN
संबंधित प्रश्न
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Prove the following
sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1
Evaluate: `sin 18^@/cos 72^@ + sqrt3 [tan 10° tan 30° tan 40° tan 50° tan 80°]`
Prove that:
4 (sin4 30° + cos4 60°) -3 (cos2 45° - sin2 90°) = 2
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
Prove that : cos60° . cos30° - sin60° . sin30° = 0
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`