Advertisements
Advertisements
प्रश्न
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
उत्तर
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
= `(1/2+1-2/sqrt3)/(2/sqrt3+1/2+1)`
= `((3/2-2/sqrt3)/(3/2+2/sqrt3))`
= `((3sqrt3 - 4)/(2sqrt3))/((4 + 3sqrt3)/(2sqrt3))`
= `(3sqrt3-4)/(3sqrt3+4)`
= `((3sqrt3-4)(3sqrt3-4))/((3sqrt3+4)(3sqrt3-4))`
= `((3sqrt3-4)^2)/((3sqrt3)^2 -(4)^2)`
= `(27+16-24sqrt3)/(27-16)`
= `(43-24sqrt3)/11`
APPEARS IN
संबंधित प्रश्न
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate cos 48° − sin 42°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that
tan (55° − θ) − cot (35° + θ) = 0
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
find the value of: sin2 30° + cos2 30°+ cot2 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
Find the value of the following:
`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`
Prove the following:
`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.