हिंदी

Evaluate the following: sin30°+ tan45°– cosec 60°sec30°+ cos60°+ cot45° - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`

योग

उत्तर

`(sin 30° +  tan 45° –  cosec  60°)/(sec 30° +  cos 60° +  cot 45°)`

= `(1/2+1-2/sqrt3)/(2/sqrt3+1/2+1)`

= `((3/2-2/sqrt3)/(3/2+2/sqrt3))`

= `((3sqrt3  -  4)/(2sqrt3))/((4  +  3sqrt3)/(2sqrt3))`

= `(3sqrt3-4)/(3sqrt3+4)`

= `((3sqrt3-4)(3sqrt3-4))/((3sqrt3+4)(3sqrt3-4))`

= `((3sqrt3-4)^2)/((3sqrt3)^2 -(4)^2)`

= `(27+16-24sqrt3)/(27-16)`

= `(43-24sqrt3)/11`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction to Trigonometry - Exercise 8.2 [पृष्ठ १८७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 10
अध्याय 8 Introduction to Trigonometry
Exercise 8.2 | Q 1.4 | पृष्ठ १८७

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.


State whether the following is true or false. Justify your answer.

sinθ = cosθ for all values of θ.


Evaluate cos 48° − sin 42°


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Prove that sin 48° sec 42° + cos 48° cosec 42° = 2


Prove that

tan (55° − θ) − cot (35° + θ) = 0


If A =30o, then prove that :
sin 2A = 2sin A cos A =  `(2 tan"A")/(1 + tan^2"A")`


find the value of: sin2 30° + cos2 30°+ cot2 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If `sqrt3` = 1.732, find (correct to two decimal place)  the value of  `(2)/(tan 30°)`


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.


Without using table, find the value of the following:

`(sin30° - sin90° +  2cos0°)/(tan30° tan60°)` 


Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


Find the value of the following:

`(tan45^circ)/("cosec"30^circ) + (sec60^circ)/(cot45^circ) - (5sin90^circ)/(2cos0^circ)`


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×