Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: sin230° sin245° + sin260° sin290°.
उत्तर
sin230° sin245° + sin260° sin290°
sin30° = `(1)/(2)`
sin45° = `(1)/sqrt(2)`
sin60° = `sqrt(3)/(2)`
sin90° = 1
sin230° sin245° + sin260° sin290°
= `(1/2)^2 (1/sqrt(2))^2 + (sqrt(3)/2)^2 1`
= `(1)/(4) xx (1)/(2) + (3)/(4)`
= `(1)/(8) + (3)/(4)`
= `(1 + 6)/(8)`
= `(7)/(8)`.
APPEARS IN
संबंधित प्रश्न
Evaluate the following in the simplest form:
sin 60° cos 30° + cos 60° sin 30°
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
`(2 tan 30°)/(1-tan^2 30°)` = ______.
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
If Sin 3A = cos (A – 26°), where 3A is an acute angle, find the value of A =?
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Prove the following
`(tan (90 - A) cot A)/(cosec^2 A) - cos^2 A =0`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Evaluate: `cos 58^@/sin 32^@ + sin 22^@/cos 68^@ - (cos 38^@ cosec 52^@)/(tan 18^@ tan 35^@ tan 60^@ tan 72^@ tan 65^@)`
If cos 20 = sin 4 θ ,where 2 θ and 4 θ are acute angles, then find the value of θ
find the value of: sin 30° cos 30°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: sin 45°
Prove that:
cos2 30° - sin2 30° = cos 60°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
secθ . Cot θ= cosecθ ; write true or false
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
Without using tables, find the value of the following: `(4)/(cot^2 30°) + (1)/(sin^2 60°) - cos^2 45°`
Prove that: sin60°. cos30° - sin60°. sin30° = `(1)/(2)`
Prove that : sec245° - tan245° = 1
Find the value of x in the following: `2sin x/(2)` = 1
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If sin(A +B) = 1(A -B) = 1, find A and B.
If 2 sin 2θ = `sqrt(3)` then the value of θ is
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`