Advertisements
Advertisements
प्रश्न
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
उत्तर
tan θ = cotθ
tan θ = `(1)/(tanθ )`
tan2 θ = 1
tan θ = 1
tan θ = tan 45°
θ = 45°
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
`(1- tan^2 45°)/(1+tan^2 45°)` = ______
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following :
`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Prove the following :
`(cos(90^@ - theta) sec(90^@ - theta)tan theta)/(cosec(90^@ - theta) sin(90^@ - theta) cot (90^@ - theta)) + tan (90^@ - theta)/cot theta = 2`
Evaluate: `4(sin^2 30 + cos^4 60^@) - 2/3 3[(sqrt(3/2))^2 . [1/sqrt2]^2] + 1/4 (sqrt3)^2`
Prove that
tan (55° − θ) − cot (35° + θ) = 0
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
find the value of: sin 30° cos 30°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
Prove that:
`((tan60° + 1)/(tan 60° – 1))^2 = (1+ cos 30°) /(1– cos 30°) `
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
For any angle θ, state the value of: sin2 θ + cos2 θ
Given A = 60° and B = 30°,
prove that : cos (A + B) = cos A cos B - sin A sin B
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A = B = 45° ,
show that:
cos (A + B) = cos A cos B - sin A sin B
If sin(A - B) = sinA cosB - cosA sinB and cos(A - B) = cosA cosB + sinA sinB, find the values of sin15° and cos15°.
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
Verify cos3A = 4cos3A – 3cosA, when A = 30°
If sin 30° = x and cos 60° = y, then x2 + y2 is
If A and B are acute angles such that sin (A – B) = 0 and 2 cos (A + B) – 1 = 0, then find angles A and B.
Evaluate: sin2 60° + 2tan 45° – cos2 30°.