Advertisements
Advertisements
प्रश्न
If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`
उत्तर
Given A = 30°
cos2A = cos 2 (30°) = cos 60° = `(1)/(2)`
= `(3)/(4) – (1)/(4)`
= `(1)/(2)`
`(1 – tan^2"A")/(1 + tan^2"A") = (1 – tan^2 30°)/(1 + tan^2 30°)`
= `(1 – (1)/(3))/(1+(1)/(3)`
= `(2)/(4)`
= '(1)/(2)`
∴ cos 2A = `cos^"A" – sin^2"A" = (1 – tan^2"A")/(1 + tan^2"A")`
APPEARS IN
संबंधित प्रश्न
An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.
Evaluate the following:
`(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + cos^2 30°)`
`(2 tan 30°)/(1+tan^2 30°)` = ______.
State whether the following is true or false. Justify your answer.
The value of sinθ increases as θ increases.
Evaluate cos 48° − sin 42°
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Evaluate the following :
`tan 10^@/cot 80^@`
Evaluate the following :
`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sec 76° + cosec 52°
Prove that `cos 80^@/sin 10^@ + cos 59^@ cosec 31^@ = 2`
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.
cosec54° + sin72°
Prove that:
sin 60° cos 30° + cos 60° . sin 30° = 1
prove that:
sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
find the value of: cos2 60° + sin2 30°
Prove that:
cos 30° . cos 60° - sin 30° . sin 60° = 0
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
Given A = 60° and B = 30°,
prove that: tan (A - B) = `(tan"A" – tan"B")/(1 + tan"A".tan"B")`
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.
Find the value of the following:
sin2 30° – 2 cos3 60° + 3 tan4 45°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).