हिंदी

If A =30o, then prove that : cos 2A = cos2A - sin2A = 1 – tan 2 A 1 + tan 2 A - Mathematics

Advertisements
Advertisements

प्रश्न

If A =30o, then prove that :
cos 2A = cos2A - sin2A = `(1 – tan^2"A")/(1+ tan^2"A")`

योग

उत्तर

Given A = 30°

cos2A = cos 2 (30°) = cos 60° = `(1)/(2)`

= `(3)/(4) – (1)/(4)`

= `(1)/(2)`

`(1 –  tan^2"A")/(1 + tan^2"A") = (1 – tan^2 30°)/(1 + tan^2 30°)`

= `(1 – (1)/(3))/(1+(1)/(3)`

= `(2)/(4)`

= '(1)/(2)`

∴ cos 2A = `cos^"A" – sin^2"A" = (1 – tan^2"A")/(1 + tan^2"A")`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 23: Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios] - Exercise 23 (B) [पृष्ठ २९३]

APPEARS IN

सेलिना Concise Mathematics [English] Class 9 ICSE
अध्याय 23 Trigonometrical Ratios of Standard Angles [Including Evaluation of an Expression Involving Trigonometric Ratios]
Exercise 23 (B) | Q 2.2 | पृष्ठ २९३

संबंधित प्रश्न

An equilateral triangle is inscribed in a circle of radius 6 cm. Find its side.


Evaluate the following:

`(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° +  cos^2 30°)`


`(2 tan 30°)/(1+tan^2 30°)` = ______.


State whether the following is true or false. Justify your answer.

The value of sinθ increases as θ increases.


Evaluate cos 48° − sin 42°


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`tan 10^@/cot 80^@`


Evaluate the following :

`((sin 27^@)/(cos 63^@))^2 - (cos 63^@/sin 27^@)^2`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

tan 65° + cot 49°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

sec 76° + cosec 52°


Prove that `cos 80^@/sin 10^@  + cos 59^@ cosec 31^@ = 2`


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


Prove that:

sin 60° cos 30° + cos 60° . sin 30°  = 1


prove that:

sin (2 × 30°) = `(2 tan 30°)/(1+tan^2 30°)`


If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)


find the value of: cos2 60° + sin2 30°


Prove that:

cos 30° . cos 60° - sin 30° . sin 60°  = 0


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


Given A = 60° and B = 30°,

prove that: tan (A - B) = `(tan"A"  –  tan"B")/(1 + tan"A".tan"B")`


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


Without using tables, evaluate the following: cosec245° sec230° - sin230° - 4cot245° + sec260°.


If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


Find the value of the following:

sin2 30° – 2 cos3 60° + 3 tan4 45°


The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to


If sin α = `1/2`, then find the value of (3 cos α – 4 cos3 α).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×