Advertisements
Advertisements
प्रश्न
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to
विकल्प
cos 60°
sin 60°
tan 60°
sin 30°
उत्तर
tan 60°
Explanation;
Hint:
`(2tan30^circ)/(1 - tan^2 30^circ) = (2 xx 1/sqrt(3))/(1 - (1/sqrt(3))^2`
= `2/sqrt(3) ÷ 1 - 1/3`
= `2/sqrt(3) ÷ 2/3`
= `2/sqrt(3) xx 3/2`
= `3/sqrt(3)`
= `sqrt(3)`
= tan 60°
APPEARS IN
संबंधित प्रश्न
If x = 30°, verify that
(i) `\tan 2x=\frac{2\tan x}{1-\tan ^{2}x`
(ii) `\sin x=\sqrt{\frac{1-\cos 2x}{2}}`
Evaluate the following:
`(sin 30° + tan 45° – cosec 60°)/(sec 30° + cos 60° + cot 45°)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
tan 65° + cot 49°
Without using tables, evaluate the following: cosec330° cos60° tan345° sin290° sec245° cot30°.
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Find the value of the following:
(sin 90° + cos 60° + cos 45°) × (sin 30° + cos 0° – cos 45°)
Verify cos3A = 4cos3A – 3cosA, when A = 30°
The value of 5 sin2 90° – 2 cos2 0° is ______.