Advertisements
Advertisements
प्रश्न
If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.
उत्तर
sinθ = cosθ
⇒ `"sinθ"/"cosθ" = "cosθ"/"cosθ"`
⇒ tanθ = 1
⇒ tanθ = tan45°
⇒ θ = 45°.
APPEARS IN
संबंधित प्रश्न
Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º
sin 2A = 2 sin A is true when A = ______.
State whether the following is true or false. Justify your answer.
The value of cos θ increases as θ increases.
Evaluate the following :
`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`
Evaluate the following :
sin 35° sin 55° − cos 35° cos 55°
Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°
Sin 59° + cos 56°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@ - 4 cos 50^@ cosec 40^@`
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
find the value of: tan 30° tan 60°
Prove that:
cosec2 45° - cot2 45° = 1
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
Evaluate :
`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.
If A = 30o, then prove that :
2 cos2 A - 1 = 1 - 2 sin2A
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`
Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Verify the following equalities:
1 + tan2 30° = sec2 30°
The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.
`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.
Evaluate: `(5 "cosec"^2 30^circ - cos 90^circ)/(4 tan^2 60^circ)`