हिंदी

If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'. - Mathematics

Advertisements
Advertisements

प्रश्न

If sinθ = cosθ and 0° < θ<90°, find the value of 'θ'.

योग

उत्तर

sinθ = cosθ

⇒ `"sinθ"/"cosθ" = "cosθ"/"cosθ"`
⇒  tanθ = 1
⇒  tanθ = tan45°
⇒ θ = 45°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 9

संबंधित प्रश्न

Using the formula, sin(A – B) = sinA cosB – cosA sinB, find the value of sin 15º


sin 2A = 2 sin A is true when A = ______.


State whether the following is true or false. Justify your answer.

The value of cos θ increases as θ increases.


Evaluate the following :

`((sin 49^@)/(cos 41^@))^2 + (cos 41^@/(sin 49^@))^2`


Evaluate the following :

sin 35° sin 55° − cos 35° cos 55°


Express each one of the following in terms of trigonometric ratios of angles lying between
0° and 45°

Sin 59° + cos 56°


Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°

cosec 54° + sin 72°


Prove that  tan 20° tan 35° tan 45° tan 55° tan 70° = 1


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Without using trigonometric tables, prove that:

cos54° cos36° − sin54° sin36° = 0


find the value of: tan 30° tan 60°


Prove that:

cosec2 45°  - cot2 45°  = 1


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°


Evaluate : 

`(3 sin 3"B" + 2 cos(2"B" + 5°))/(2 cos 3"B" – sin (2"B" – 10°)` ; when "B" = 20°.


If A = 30o, then prove that :

2 cos2 A - 1 = 1 - 2 sin2A


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A


If A = 30°;
show that:
`(1 – cos 2"A")/(sin 2"A") = tan"A"`


Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°


If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B


If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA


In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB


Verify the following equalities:

1 + tan2 30° = sec2 30°


The value of cos1°. cos2°. cos3°. cos4°....................... cos90° is ______.


`(2/3 sin 0^circ - 4/5 cos 0^circ)` is equal to ______.


Evaluate: `(5  "cosec"^2  30^circ - cos 90^circ)/(4 tan^2 60^circ)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×