हिंदी

Find the value of x in the following: cos 2x = cos60° cos30° + sin60° sin30° - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of x in the following: cos2x = cos60° cos30° + sin60° sin30°

योग

उत्तर

cos2x = cos60° cos30° + sin60° sin30°

⇒ cos2x = `(1)/(2) xx sqrt(3)/(2) + sqrt(3)/(2) xx (1)/(2)`

⇒ cos2x = `sqrt(3)/(4) + sqrt(3)/(4)`

⇒ cos2x = `(2sqrt(3))/(4)`

⇒ cos2x = `sqrt(3)/(2)`
⇒ cos2x = cos30°
⇒ 2x = 30°
⇒ x = 15°.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 27: Trigonometrical Ratios of Standard Angles - Exercise 27.1

APPEARS IN

फ्रैंक Mathematics [English] Class 9 ICSE
अध्याय 27 Trigonometrical Ratios of Standard Angles
Exercise 27.1 | Q 8.6

संबंधित प्रश्न

If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`


State whether the following is true or false. Justify your answer.

sin (A + B) = sin A + sin B


State whether the following are true or false. Justify your answer.

cot A is not defined for A = 0°.


Evaluate cos 48° − sin 42°


Evaluate the following:

`(sin 20^@)/(cos 70^@)`


Evaluate the following :

`(cot 40^@)/cos 35^@ -  1/2 [(cos 35^@)/(sin 55^@)]`


Evaluate the following :

`(sec 70^@)/(cosec 20^@) + (sin 59^@)/(cos 31^@)`


Evaluate the following :

cosec 31° − sec 59°


Prove that `sin 70^@/cos 20^@  + (cosec 20^@)/sec 70^@  -  2 cos 20^@ cosec 20^@ = 0`


Prove the following

`(tan (90 - A) cot A)/(cosec^2 A)   - cos^2 A =0`


Prove the following

 sin (50° − θ) − cos (40° − θ) + tan 1° tan 10° tan 20° tan 70° tan 80° tan 89° = 1


Evaluate: `sin 50^@/cos 40^@ + (cosec 40^@)/sec 50^@  - 4 cos 50^@ cosec 40^@`


Express each of the following in terms of trigonometric ratios of angles lying between 0° and 45°.

cosec54° + sin72°


find the value of: sin 30° cos 30°


Evaluate: 

`(cos3"A" – 2cos4"A")/(sin3"A" + 2sin4"A")` , when A = 15°


If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.


ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratio: cos 45°


If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ


secθ . Cot θ= cosecθ ; write true or false


If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.


If A = 30°;
show that:
cos 2A = cos4 A - sin4 A


If A = 30°;
show that:
`(1 + sin 2"A" + cos 2"A")/(sin "A" + cos"A") = 2 cos "A"`


Without using tables, evaluate the following: (sin90° + sin45° + sin30°)(sin90° - cos45° + cos60°).


Find the value of x in the following: `sqrt(3)sin x` = cos x


If sin(A - B) = `(1)/(2)` and cos(A + B) = `(1)/(2)`, find A and B.


If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.


Verify the following equalities:

cos 90° = 1 – 2sin2 45° = 2cos2 45° – 1


Prove the following:

`(sqrt(3) + 1) (3 - cot 30^circ)` = tan3 60° – 2 sin 60°


Evaluate: `(5cos^2 60° +  4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×