Advertisements
Advertisements
प्रश्न
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
उत्तर
tan (A+B) = 1
⇒ tan(A+B) = tan 45°
⇒ A +B = 45° ..........(1)
tan(A-B)`=1/sqrt3`
⇒ tan (A-B)=tan 30°
⇒ A - B = 30 ......(2)
On adding (1) and (2), we obtain
2A = 75°
⇒ A = 37.5°
Putting the value of A in (1) we get
37.5° + B = 45°
⇒ B = 7.5°
Therefore,∠A = 37.5° and ∠B = 7.5°
APPEARS IN
संबंधित प्रश्न
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
Evaluate the following :
`(sin 21^@)/(cos 69^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
sin 67° + cos 75°
Evaluate:
`2/3 (cos^4 30° - sin^4 45°) - 3(sin^2 60° - sec^2 45°) + 1/4 cot^2 30°`.
find the value of: tan 30° tan 60°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If tan `"A" = (1)/(2), tan "B" = (1)/(3) and tan("A" + "B") = (tan"A" + tan"B")/(1 - tan"A" tan"B")`, find A + B.
Verify the following equalities:
sin 30° cos 60° + cos 30° sin 60° = sin 90°
The value of `(2tan30^circ)/(1 - tan^2 30^circ)` is equal to