Advertisements
Advertisements
प्रश्न
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
उत्तर
4(sin430° + cos460°) - 3(cos245° - sin290°).
sin30° = `(1)/(2)`
sin90° = 1
cos45° = `(1)/sqrt(2)`
cos60° = `(1)/(2)`
4(sin430° + cos460°) - 3(cos245° - sin290°)
= `4((1/2)^4 + (1/2)^4) -3((1/sqrt(2))^2 - (1)^2)`
= `4(1/16 + 1/16) -3(1/2 - 1)`
= `4 xx (2)/(16) + 3 xx (1)/(2)`
= `(1)/(2) + (3)/(2)`
= `(4)/(2)`
= 2.
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Find the value of x in the following :
tan 3x = sin 45º cos 45º + sin 30º
If tan (A + B) = `sqrt3` and tan (A – B) = `1/sqrt3`; 0° < A + B ≤ 90°; A > B, find A and B.
Evaluate the following:
`(cos 45°)/(sec 30° + cosec 30°)`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following :
`(cot 40^@)/cos 35^@ - 1/2 [(cos 35^@)/(sin 55^@)]`
Evaluate the following :
`tan 35^@/cot 55^@ + cot 78^@/tan 12^@ -1`
Evaluate the following
sec 50º sin 40° + cos 40º cosec 50º
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cosec 54° + sin 72°
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
Prove the following
sin θ sin (90° − θ) − cos θ cos (90° − θ) = 0
Evaluate: Cosec (65 + θ) – sec (25 – θ) – tan (55 – θ) + cot (35 + θ)
Evaluate: tan 7° tan 23° tan 60° tan 67° tan 83°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
find the value of :
`( tan 45°)/ (cos ec30°) +( sec60°)/(co 45°) – (5 sin 90°)/ (2 cos 0°)`
ABC is an isosceles right-angled triangle. Assuming of AB = BC = x, find the value of each of the following trigonometric ratios: tan 45°
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
For any angle θ, state the value of: sin2 θ + cos2 θ
If A =30o, then prove that :
sin 3A = 3 sin A - 4 sin3A.
If A = 30°;
show that:
4 cos A cos (60° - A). cos (60° + A) = cos 3A
Without using tables, evaluate the following: tan230° + tan260° + tan245°
Without using tables, find the value of the following: `(tan45°)/("cosec"30°) + (sec60°)/(cot45°) - (5sin90°)/(2cos0°)`
If A = 30° and B = 60°, verify that: sin (A + B) = sin A cos B + cos A sin B
If A = 30° and B = 60°, verify that: cos (A + B) = cos A cos B - sin A sin B
If A = 30° and B = 60°, verify that: `(sin("A" -"B"))/(sin"A" . sin"B")` = cotB - cotA
If sin 30° = x and cos 60° = y, then x2 + y2 is
The value of `(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` is