Advertisements
Advertisements
प्रश्न
Express cos 75° + cot 75° in terms of angles between 0° and 30°.
उत्तर
Given that: `cos 75^@ + cot 75^@`
`= cos (90^@ - 15^@) + cot(90^@ - 15^@)`
`= sin 15^@ + tan 15^@`
Hence the correct answer is `= sin 15^@ + tan 15^@`
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
`(2 tan 30°)/(1-tan^2 30°)` = ______.
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cos 78° + sec 78°
Express each one of the following in terms of trigonometric ratios of angles lying between 0° and 45°
cot 85° + cos 75°
Without using trigonometric tables, prove that:
cos54° cos36° − sin54° sin36° = 0
Prove that:
3 cosec2 60° - 2 cot2 30° + sec2 45° = 0
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB