Advertisements
Advertisements
प्रश्न
State whether the following are true or false. Justify your answer.
cot A is not defined for A = 0°.
विकल्प
True
False
उत्तर
This statement is False.
Explanation:
cot A is not defined for A = 0°
As,
cot A = `cos A/sin A`
cot 0° = `(cos 0°)/(sin 0°)`
= `1/0`
= 0°
Hence, the given statement is true.
APPEARS IN
संबंधित प्रश्न
Find the value of θ in each of the following :
(i) 2 sin 2θ = √3 (ii) 2 cos 3θ = 1
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
Evaluate the following in the simplest form: sin 60º cos 45º + cos 60º sin 45º
Evaluate the following:
2tan2 45° + cos2 30° − sin2 60°
`(2 tan 30°)/(1+tan^2 30°)` = ______.
Evaluate the following :
`cos 19^@/sin 71^@`
Evaluate the following
`sec 11^@/(cosec 79^@)`
Prove that tan 20° tan 35° tan 45° tan 55° tan 70° = 1
If A =30o, then prove that :
sin 2A = 2sin A cos A = `(2 tan"A")/(1 + tan^2"A")`
Prove that:
cosec2 45° - cot2 45° = 1
If sec A = cosec A and 0° ∠A ∠90°, state the value of A
If tan θ = cot θ and 0°∠θ ∠90°, state the value of θ
If `sqrt3` = 1.732, find (correct to two decimal place) the value of `(2)/(tan 30°)`
Without using tables, evaluate the following: sin60° sin30°+ cos30° cos60°
Without using tables, evaluate the following: 4(sin430° + cos460°) - 3(cos245° - sin290°).
Without using table, find the value of the following:
`(sin30° - sin90° + 2cos0°)/(tan30° tan60°)`
Find the value of x in the following: tan x = sin45° cos45° + sin30°
If A = 30° and B = 60°, verify that: `(sin("A" + "B"))/(cos"A" . cos"B")` = tanA + tanB
In ΔABC right angled at B, ∠A = ∠C. Find the value of:
(i) sinA cosC + cosA sinC
(ii) sinA sinB + cosA cosB
Find the value of 8 sin 2x, cos 4x, sin 6x, when x = 15°