Advertisements
Advertisements
प्रश्न
Evaluate the following :
`cos 19^@/sin 71^@`
उत्तर
Given that `cos 19^@/sin 71^@`
`=> cos 19/sin 71 = cos(90 - 71)/sin 71`
`=> cos 19/sin 71 = sin 71/sin 71`
`=> cos 19/sin 71 = 1`
Since `cos (90 - theta) = sin theta`
Therefore `cos 19^@/sin 71^@` = 1
APPEARS IN
संबंधित प्रश्न
If A, B and C are interior angles of a triangle ABC, then show that `\sin( \frac{B+C}{2} )=\cos \frac{A}{2}`
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
Show that:
(i) `2(cos^2 45º + tan^2 60º) – 6(sin^2 45º – tan^2 30º) = 6`
(ii) `2(cos^4 60º + sin^4 30º) – (tan^2 60º + cot^2 45º) + 3 sec^2 30º = 1/4`
State whether the following is true or false. Justify your answer.
sin (A + B) = sin A + sin B
Evaluate the following
`sec 11^@/(cosec 79^@)`
Prove that sin 48° sec 42° + cos 48° cosec 42° = 2
Prove that `sin 70^@/cos 20^@ + (cosec 20^@)/sec 70^@ - 2 cos 20^@ cosec 20^@ = 0`
Find the value of:
tan2 30° + tan2 45° + tan2 60°
Evaluate: sin2 60° + 2tan 45° – cos2 30°.
Evaluate: `(5cos^2 60° + 4sec^2 30° - tan^2 45°)/(sin^2 30° + sin^2 60°)`