Advertisements
Advertisements
Question
Evaluate the following :
`cos 19^@/sin 71^@`
Solution
Given that `cos 19^@/sin 71^@`
`=> cos 19/sin 71 = cos(90 - 71)/sin 71`
`=> cos 19/sin 71 = sin 71/sin 71`
`=> cos 19/sin 71 = 1`
Since `cos (90 - theta) = sin theta`
Therefore `cos 19^@/sin 71^@` = 1
APPEARS IN
RELATED QUESTIONS
Evaluate the following expression:
(i) `tan 60º cosec^2 45º + sec^2 60º tan 45º`
(ii) `4cot^2 45º – sec^2 60º + sin^2 60º + cos^2 90º.`
If θ is an acute angle and sin θ = cos θ, find the value of 2 tan2 θ + sin2 θ – 1
State whether the following is true or false. Justify your answer.
sinθ = cosθ for all values of θ.
Evaluate the following:
`(sin 20^@)/(cos 70^@)`
Prove that
sin (70° + θ) − cos (20° − θ) = 0
If A = 30°;
show that:
sin 3 A = 4 sin A sin (60° - A) sin (60° + A)
If tan (A + B) = 1 and tan(A-B)`=1/sqrt3` , 0° < A + B < 90°, A > B, then find the values of A and B.
If A = 30°;
show that:
(sinA - cosA)2 = 1 - sin2A
Without using tables, evaluate the following sec45° sin45° - sin30° sec60°.
Find the value of x in the following: `2sin x/(2)` = 1